Fundamentals of enzyme kinetics and thermodynamic analysis for microbial communities

Karel Olavarria

Delft University of Technology

kogamez@gmail.com

Today:

- 10:00 13:00 Djordje and Timmy theoretical models in microbial ecology.
- 14:00 14:45 Invited Lecture enzyme kinetics for microbial communities
- 15:00 18:00 Flux Balance Analysis: Timmy

Tomorrow:

- 9:00 11:30 Thermodynamics and computational practice
- 12:00 13:00 *Invited lecture Djordje*. Dynamic metabolic models
- 14:00 18:00 Djordje Dynamic FBA y Resource allocation.

The size of the problem we are going to study today

Global Bioethanol Production: 120-125 billion liters (2024)

Bioethanol in Brazil is mainly produced in open fermentation

Bioethanol production, using open fermentations, in a nutshell

Source: https://doi.org/10.1093/g3journal/jkad104

Challenges of the open fermentations

G3, 2023, 13(7), jkad104

https://doi.org/10.1093/g3journal/jkad104 Advance Access Publication Date: 2 June 2023 Investigation

Yeast population dynamics in Brazilian bioethanol production

Artur Rego-Costa, 1,† I-Ting Huang, 1,† Michael M. Desai, 1,2,3,4 Andreas K. Gombert 📵 5,*

(b) Sampling and sequencing

The yeast populations are dynamic

Article

https://doi.org/10.1038/s41467-024-49683-2

Strain dynamics of contaminating bacteria modulate the yield of ethanol biorefineries

Received: 24 August 2022

Accepted: 16 June 2024

Published online: 22 June 2024

Published online: 22 June 2024

Published online: 22 June 2024

Morten Otto Alexander Sommer

Felipe Senne de Oliveira Lino

1.6, Shilpa Garg
1.6, Simone S. Li¹²,

Maria-Anna Misiakou¹, Kang Kang
3, Bruno Labate Vale da Costa⁴,

Tobias Svend-Aage Beyer-Pedersen
1, Thamiris Guerra Giacon
5, Gianni Panagiotou
3 & Morten Otto Alexander Sommer
1

Morten Otto Alexander Sommer
1

Number of bacteria and the acids produced by them negatively affect ethanol production

- L. amylovorus and L. fermentum are the dominant bacteria.
- High-performing batches contained more *L. amylovorus*.
- Across all batches and mills, L. fermentum increases and L.
 amylovorus decreases by the end of fermentation.

nature communications

Explore content Y About the journal Y Publish with us Y

nature > nature communications > articles > article

Article Open access Published: 08 March 2021

Complex yeast-bacteria interactions affect the yield of industrial ethanol fermentation

Felipe Senne de Oliveira Lino, Djordje Bajic, Jean Celestin Charles Vila, Alvaro Sánchez & Morten Otto Alexander Sommer

✓

Nature Communications 12, Article number: 1498 (2021) | Cite this article

В

The bacterium Lactobacillus amylovorus has a positive effect on the ethanol production

In open fermentations:

- Yeast populations are dynamic.
- Different bacteria are present and influence the ethanol production.
- Some bacteria have negative effects on the ethanol production, but some bacteria have a
 positive effect.

Our goals:

- Concepts from enzyme kinetics useful to study microbial communities
- Stoichiometric analysis of metabolic networks (Timmy's lecture)
- Integrating enzyme kinetics, stoichiometric analysis and thermodynamics

Let's start with a fundamental concept: saturation

Bus transport

- One bus station
- Passengers arriving to the station at different rates
- Passengers can be transported out of the station by bus or by taxi

Which is the most effective way of transportation?

S: passengers waiting at the station

E: empty vehicles ready to be filled

ES: vehicles currently being filled with passengers

P: cumulative passengers already transported

k1: rate at which passengers enter vehicles

k1r: rate at which passengers leave vehicles (before departure)

k2: rate at which filled vehicles depart

f: external passenger influx (new arrivals per minute)

taxis are easy to fill but small capacity buses are harder to fill but large capacity

```
dS = f - k1*S*E + k1r*ES # passengers at the station

dE = -k1*S*E + (k1r + k2)*ES # empty vehicles

dES = k1*S*E - (k1r + k2)*ES # filled vehicles

dP = k2*ES # passengers transported out of the station
```


Set:

- Taxis carry 3 passengers
- Buses carry 20 passengers

taxis (n=6), passengers arriving rate=10
 buses (n=2), passengers arriving rate=10
 taxis (n=6), passengers arriving rate=25
 buses (n=2), passengers arriving rate=25

- What are representing the dashed lines?
- What happens with the transportation by taxi when the passenger arriving rate is 25 passengers/minute?

Maud Menten Leonor Michaelis

Michaelis, L., and Menten, M. (1913) Die kinetik der invertinwirkung, Biochemistry Zeitung 49, 333-369.

Sucrose hydrolisis by invertase

$$H_{2}C \xrightarrow{OH} HO \xrightarrow{H_{2}C \xrightarrow{OH}} HO$$

Happy coincidence! Sucrose is the most abundant sugar in the sugarcane juice

Michaelis and Menten also observed the phenomenon of saturation while studying the reaction catalyzed by the invertase

Goal: predict the product formation rate in an enzyme-catalyzed reaction

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

E: concentration of free enzyme

S: concentration of sucrose

ES: concentration of the enzyme-substrate complex

They assumed that a *rapid equilibrium* between the species E, S and ES is established:

$$k_1 >> k_2$$
 $k_{1r} >> k_2$

They assumed that the rate-limiting step is the product formation:

product formation rate = $k_2 * ES \leftarrow$ In 1913, no experimental evidence of the existence of ES.

Rapid equilibrium model

$$E + S \stackrel{k_1}{\longleftrightarrow} ES$$

 $rate^{ES complex formation} = rate^{ES complex dissociation}$

$$k_1 * \mathbf{E}(t) * S(t) = k_{1r} * \mathbf{ES}(t)$$

Difficult to measure

$$K_S = \frac{k_{1r}}{k_1} \qquad K_S = \frac{E(t) * S(t)}{ES(t)} \qquad ES(t) = \frac{E(t) * S(t)}{K_S} = \frac{(E_{added} - ES(t)) * S(t)}{K_S} \qquad ES(t) = \frac{E_{added} * S(t)}{K_S + S(t)}$$

product formation rate =
$$\frac{k_2 * E_{added} * S(t)}{K_S + S(t)} = \frac{V^{max} * S(t)}{K_M + S(t)}$$

If there is one liter of a sucrose solution of 5 grams/liter, and we add 0.001 grams of invertase from yeast, **how long** it takes to hydrolyze **half** of the sucrose?

Product formation rate =
$$\frac{k_{cat}*E_{added}*S(t)}{K_M+S(t)}$$

We know So=5 g/L, E_{added} = 0.001 g/L. However,

- How can we determine the kinetic parameters k_{cat} and K_{M} ?
- S is changing in time.
- Where is the variable *time*?

How can we determine the kinetic parameters k_{cat} and K_M ?

- S is changing in time. When half of the sucrose has been consumed, we are far from the initial rate conditions
- Where is the variable time?

initial rate
$$(V_o) = \frac{k_{cat} * E_{added} * So}{K_M + So}$$

product formation rate =
$$\frac{dP}{dt} = -\frac{dS}{dt} = \frac{k_{cat} * E * S(t)}{K_M + S(t)}$$

$$-\frac{dS}{dt} = \frac{k_{cat} * E * S(t)}{K_M + S(t)}$$

$$S(t) + K_M * ln \frac{S(t)}{S_o} = -k_{cat} * E * t + S_o$$
 Integrated form of the Michaelis-Menten equation

$$t = \frac{S(t) + K_M * \ln \frac{S(t)}{So} - So}{-k_{cat} * E}$$

$$t = \frac{S(t) + K_M * \ln \frac{S(t)}{So} - So}{-k_{cat} * E}$$

In our particular case, S(t) = So/2

$$t_{0.5} = \frac{So/2 + K_M * ln \frac{1}{2} - So}{-k_{cat} * E}$$

For So=5 g*/L, E = 0.001 g*/L, K_M = 25 mM and k_{cat} = 3600 s-1, $t_{0.5} \approx$ 6 minutes

^{*}Mw_sucrose = 342.3 g/mol

^{*}Mw_invertase = 52000 g/mol

The integrated form of the Michaelis-Menten equation can also be employed to find the values of k_{cat} and K_M using reaction progress curves analysis

Between 1913 and 1997:

- Numerical integration
- (Complicated) algebraic methods

$$S(t) = K_M * \omega \left(\frac{S_o}{K_M} * e^{\frac{-k_{cat*E*t+S_o}}{K_M}} \right)$$

Santiago Schnell

Claudio Mendoza

https://doi.org/10.1006/jtbi.1997.0425

transporters can also be represented with the Michaelis-Menten equation

(a) Competitive inhibition

$$V_0 = \frac{V_{\rm max}\left[{\rm S}\right]}{\alpha K_{\rm m} + \left[{\rm S}\right]} \qquad \alpha = 1 \, + \, \frac{\left[{\rm I}\right]}{K_{\rm I}} \qquad K_{\rm I} = \frac{\left[{\rm E}\right]\left[{\rm I}\right]}{\left[{\rm EI}\right]}$$

(b) Uncompetitive inhibition

$$V_0 = \frac{V_{\rm max}\left[{\rm S}\right]}{K_{\rm m} + \alpha'[{\rm S}]} \qquad \alpha' = 1 + \frac{[{\rm I}]}{K_{\rm I}'} \qquad \qquad K_{\rm I}' = \frac{[{\rm ES}][{\rm I}]}{[{\rm ESI}]} \label{eq:V0}$$

(c) Mixed inhibition

$$V_0 = \frac{V_{\rm max}\left[{\rm S}\right]}{\alpha K_{\rm m} + \alpha'[{\rm S}]}$$

Coming back to our original problem:

Sucrose is hydrolyzed by invertase (produced by yeast) into glucose and fructose via
 Michaelis–Menten kinetics.

• Glucose and fructose are taken up by both yeast and bacteria.

 Assuming: Yeast transporters for glucose and fructose are inhibited by a bacterial toxin. The inhibition mechanism can be competitive or non-competitive.

Which inhibitory mechanism is more effective for the bacteria?

fermentum strain B

Energetic cost of the acids produced by bacteria

Houston, we have a problem: No one of the glycolytic reaction can be described with the Michaelis-Menten equation!

Fortunately, there are methods to deal with this problem

Analysis of metabolic network under metabolic

steady-state (Timmy's lecture)

Integrating enzyme kinetics and thermodynamics

(second lecture)

•	We reviewed some fundamental concepts of enzyme kinetics
•	We learnt how some enzyme kinetics equations can help us to represent simple microbial interactions
•	We saw that the actual representation of the metabolic processes can be very complex
	To be continued